Basis partition polynomials, overpartitions and the Rogers-Ramanujan identities
نویسنده
چکیده
In this paper, a common generalization of the Rogers-Ramanujan series and the generating function for basis partitions is studied. This leads naturally to a sequence of polynomials, called BsP-polynomials. In turn, the BsP-polynomials provide simultaneously a proof of the Rogers-Ramanujan identities and a new, more rapidly converging series expansion for the basis partition generating function. Finally the basis partitions are identified with a natural set of overpartitions.
منابع مشابه
Overpartitions, lattice paths, and Rogers-Ramanujan identities
Abstract. We extend partition-theoretic work of Andrews, Bressoud, and Burge to overpartitions, defining the notions of successive ranks, generalized Durfee squares, and generalized lattice paths, and then relating these to overpartitions defined by multiplicity conditions on the parts. This leads to many new partition and overpartition identities, and provides a unification of a number of well...
متن کاملBressoud Style Identities for Regular Partitions and Overpartitions
We construct a family of partition identities which contain the following identities: Rogers-Ramanujan-Gordon identities, Bressoud’s even moduli generalization of them, and their counterparts for overpartitions due to Lovejoy et al. and Chen et al. We obtain unusual companion identities to known theorems as well as to the new ones in the process. The proof is, against tradition, constructive an...
متن کاملEnumeration and Special Functions
1.1 q -binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.2 Unimodality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 1.3 Congruences for the partition function . . . . . . . . . . . . . . . . . . . . . . . . . 143 1.4 The Jacobi triple product identity . . . . . . . . . . . . . . . . . ...
متن کاملOverpartition Theorems of the Rogers-ramanujan Type
We give one-parameter overpartition-theoretic analogues of two classical families of partition identities: Andrews’ combinatorial generalization of the Gollnitz-Gordon identities and a theorem of Andrews and Santos on partitions with attached odd parts. We also discuss geometric counterparts arising from multiple q-series identities. These involve representations of overpartitions in terms of g...
متن کاملn-COLOR OVERPARTITIONS, TWISTED DIVISOR FUNCTIONS, AND ROGERS-RAMANUJAN IDENTITIES
In the early 90’s Andrews discussed a certain q-series whose coefficients are determined by a twisted divisor function. We provide several other examples of this nature. All of these q-series can be interpreted combinatorially in terms of n-color overpartitions, as can some closely related series occurring in identities of the Rogers-Ramanujan type.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 197 شماره
صفحات -
تاریخ انتشار 2015